

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 8104-8107

Synthesis of brasilibactin A and confirmation of absolute configuration of β -hydroxy acid fragment

Yongcheng Ying and Jiyong Hong*

Department of Chemistry, Duke University, Durham, NC 27708, USA

Received 21 August 2007; revised 6 September 2007; accepted 18 September 2007 Available online 21 September 2007

Abstract—A synthesis of brasilibactin A, a cytotoxic siderophore from the actinomycete of *Nocardia brasiliensis*, and three unnatural diastereomers of the natural product is described. Four possible diastereomers of the β -hydroxy acid fragment were prepared via asymmetric aldol reactions and used to synthesize brasilibactin A and its diastereomers. Careful analysis of ¹H NMR data confirmed that brasilibactin A possesses the 17*S*,18*R* absolute stereochemistry. © 2007 Elsevier Ltd. All rights reserved.

Brasilibactin A (1, Fig. 1) is a potent cytotoxic siderophore isolated from the actinomycete of Nocardia brasiliensis IFM 0995 by Tsuda et al.¹ The structure and stereochemistry of brasilibactin A was determined by extensive spectroscopic and chemical analysis.¹ Brasilibactin A (1) possesses a nearly identical molecular nucleus to many mycobactin-type siderophores, which includes a hydroxamic acid, an N-hydroxyformamide, and a 2-(2-hydroxyphenyl)- Δ^2 -1,3-oxazoline which all serve as iron-chelating components.² Mitchell et al. recently reported the first total synthesis of **1** and revised the originally assigned *anti*-configuration¹ of the β -hydroxy acid fragment in 1 as syn-configuration by synthesizing two of the four possible diastereomers of the β -hydroxy acid fragment.³ Brasilibactin A (1) was reported to exhibit potent cytotoxicity against murine leukemia L1210 and human epidermoid carcinoma KB

Figure 1. Structure of brasilibactin A.

0040-4039/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.09.112

cells (IC₅₀, 0.02 and 0.04 µg/mL, respectively) and to cause a concentration-dependent increase in the caspase-3 activity in HL60 cells.¹ However, the molecular mechanism of brasilibactin A (1) has yet to be established. We undertook the total synthesis of brasilibactin A (1) and its diastereomers to study the effect of configuration of the β -hydroxy acid fragment on biological activity (e.g., Fe³⁺-chelation capability, cytotoxicity). Herein, we report a synthesis of brasilibactin A (1) and three unnatural diastereomers as well as an unambiguous confirmation of the absolute configuration of the β -hydroxy acid fragment of the natural product.

Scheme 1 describes our approach to the synthesis of brasilibactin A and its diastereomers (1-4) via coupling of four fragments (5-11). Disconnection of an ester and two amide bonds of brasilibactin A vields four fragments, an oxazoline 5, an N-hydroxyformamide 6, a β -hydroxy acid (7–10), and a cyclic hydroxamic acid 11. The oxazoline 5 could be prepared from a direct condensation of a derivative of salicylic acid 12 and D-serine benzyl ester (13). The N-hydroxyformamide 6 and the cyclic hydroxamic acid 11 could be derived from N^{α} -Cbz-D-lysine (14) via methodologies previously established by Miller et al. We anticipated that highly stereoselective aldol reactions of hexadecanal (19) with N-propanoyl-oxazolidinone and O-propanoyl-norephedrine could be used to prepare the four possible synand *anti*-diastereomers of the β -hydroxy acid (7–10).

As outlined in Scheme 2, oxazoline 5 was synthesized from commercially available methyl salicylate 20.^{2a} Protection of 20 with BnBr⁴ and subsequent hydrolysis

Keywords: Brasilibactin A; Siderophore; Absolute configuration; β -Hydroxy acid.

^{*} Corresponding author. Tel.: +1 919 660 1545; fax: +1 919 660 1605; e-mail: jiyong.hong@duke.edu

Scheme 1. Retrosynthetic analysis of brasilibactin A.

Scheme 2. Synthesis of oxazoline 5. Reagents and conditions: (a) (i) BnBr, K_2CO_3 , KI, THF, rt, 24 h; (ii) KOH, MeOH, H₂O, 64% for two steps; (b) 13, EDC, Et₃N, CH₂Cl₂, rt, 24 h, 64%; (c) Burgess reagent, THF, reflux, 30 min, 70%; (d) 10% Pd–C, H₂, MeOH, rt, 2 h, >90%.

(KOH, MeOH)⁵ provided **12** (64% for two steps). A coupling of **12** to D-serine benzyl ester (**13**)⁶ followed by treatment of **21** with Burgess reagent provided **22**.^{2a} Final deprotection of the Bn protecting groups in **22** under conventional conditions (H₂/Pd–C) completed the synthesis of **5** (>90%).

The *N*-hydroxyformamide **6** and the cyclic hydroxamic acid **11** were prepared following the procedures established by Miller et al.⁷ As shown in Scheme 3, N^{α} -Cbz-D-lysine (**14**) was converted to the corresponding methyl ester followed by oxidation with dimethyldioxirane in acetone to give nitrone **23**.^{7a} Treatment of **23** with NH₂OH·HCl, coupling with formic acid, protection with SEMCl, and hydrolysis under basic conditions completed the synthesis of *N*-hydroxyformamide **6**.^{7b} N^{α} -Cbz-D-lysine (**14**) was treated with benzaldehyde under basic conditions followed by oxidation with *m*-CPBA and TFA-promoted isomerization to provide

Scheme 3. Synthesis of *N*-hydroxyformamide 6 and cyclic hydroxamic acid 11. Reagents and conditions: (a) SOCl₂, MeOH, rt, 24 h; then dimethyldioxirane, acetone, -78 °C, 15 min, 58% for two steps; (b) (i) NH₂OH·HCl, MeOH, 40 °C, 12 min; (ii) HCO₂H, EDC, CH₂Cl₂, 0 °C, 2 h; then *i*-Pr₂NEt, MeOH, rt, 48 h, 70% for two steps; (iii) SEMCl, *i*-Pr₂NEt, DMAP, CH₂Cl₂, rt, 24 h, 80%; (c) aq. LiOH, THF, 0 °C, 30 min, rt, 1 h, 90%; (d) PhCHO, KOH, MeOH, 3 Å MS, rt, 24 h, then *m*-CPBA, MeOH, 0 °C, 2 h; (e) TFA, CH₂Cl₂, rt, 1 h; then PhCHO, rt, 24 h, 50% for two steps; (f) (i) NH₂OH·HCl, MeOH, 60 °C, 20 min; (ii) EDC, HOAt, NaHCO₃, CH₃CN/DMF (7:2), rt, 48 h; (iii) TBDPSCl, imidazole, DMF, 35 °C, 24 h, 40% for three steps; (g) 10% Pd–C, H₂, MeOH, rt, 2 h, >90%.

the corresponding nitrone $26.^{7c,d}$ Since hydrolysis of 26 resulted in the formation of a hydroxylamine, addition of benzaldehyde to the reaction mixture improved the yield of the reaction (50% for two steps).^{7c} Treatment of 26 with NH₂OH·HCl, cyclization of the corresponding hydroxylamine under standard conditions (EDC, HOAt, NaHCO₃), and protection of the cyclic hydroxamic acid with TBDPSCl afforded 27.^{2a,7c} Final deprotection of the Cbz protecting group in 27 under conventional conditions (H₂/Pd–C) provided 11 (>90%).

Synthesis of four possible diastereomers of the β -hydroxy acid fragment (7–10) was achieved by employing the highly stereoselective *syn*-aldol reactions of the *N*-propanoyl-oxazolidinones (15 and 16)⁸ and *anti*-aldol reactions of the *O*-propanoyl-norephedrines (17 and 18)⁹ (Scheme 4). The aldol reactions of hexadecanal (19)¹⁰ with 15 and 16 in the presence of *n*-Bu₂-BOTf and *i*-Pr₂NEt provided the desired *syn*-aldol adducts 28 (85%) and 29 (85%), respectively, as a single

Bn

SO₂Mes

18

10

syn-aldol adducts (R = $C_{15}H_{31}$)

Scheme 4. Synthesis of β-hydroxy acid (7–10). Reagents and conditions: (a) (i) $(n-Bu)_2BOTf$, *i*-Pr₂NEt, CH₂Cl₂, 0 °C, 30 min; (ii) 19, CH₂Cl₂, -78 °C, 2 h, 85%; (b) 30% H₂O₂, LiOH, THF/H₂O (4:1), 0 °C, 1 h, 90%; (c) (i) $(c-hex)_2BOTf$, Et₃N, CH₂Cl₂, 0 °C, 30 min; (ii) 19, CH₂Cl₂, -78 °C, 2 h, 80%; (d) LiOH, THF/MeOH/H₂O (2:3:2), rt, 4 days, 85%.

SO₂Mes 31

Bn

diastereomer. Hydrolysis of the β -hydroxy amides (**28** and **29**) under conventional conditions (30% H₂O₂, LiOH) provided the corresponding β -hydroxy acids (**7** and **8**) in 90% yield, respectively. In a similar manner, the aldol reactions of hexadecanal (**19**) with the chiral derivatives of norephedrine (**17** and **18**) in the presence of *c*-Hex₂BOTf and Et₃N followed by the hydrolysis of the corresponding esters (**30** and **31**) were utilized for the preparation of the *anti*- β -hydroxy acids (**9** and **10**).

The synthesis of brasilibactin A (1) and its diastereomers (2–4) began with coupling 7–10 and 11 as shown in Scheme 5. EDC-coupling^{2a} of 7 to 11 followed by subsequent coupling^{3,7b} of 32 to 6 provided 36. Alternative methods for the formation of the ester bond (DEAD or DIAD, PPh₃; 2,4,6-trichlorobenzoyl chloride, NEt₃, then DMAP; EDC, DMAP) failed to react with this sterically hindered substrate. Deprotection of the Cbz protecting group in 36 and coupling of the corresponding amine to 5 completed the synthesis of the protected depsipeptide (40).³ Final deprotection of the SEM and

Scheme 5. Synthesis of 1–4. Reagents and conditions: (a) EDC, CH_2Cl_2 , rt, 24 h, 64–68%; (b) 6, DCC, DMAP, toluene, rt, 48 h, 76–89%; (c) 10% Pd–C, H₂, MeOH, rt, 2 h; then 5, EDC, CH_2Cl_2 , rt, 24 h, 48–57%; (d) TFA, CH_2Cl_2 , rt, 1.5 h, 68–73%.

TBDPS protecting groups in 40 by treatment with TFA afforded 1 in 68% yield.^{3,7b} The diastereomers of brasilibactin A (2–4) were also prepared in the same manner. ¹H NMR data for 1–4 were carefully compared with the authentic material (Table 1). The chemical shifts and coupling patterns of 1, in particular those of H-14 (δ 4.25, m), H-17 (δ 4.90, dt, J = 2.8, 8.8 Hz), H-18 (δ 2.62, m), and H-20 (δ 8.13, d, J = 7.2 Hz), were identical to those of the natural product.^{1,3} The comparison unambiguously showed that brasilibactin A possesses the 17*S*,18*R* absolute stereochemistry, which is consistent with the assignment by Mitchell et al.³

In summary, we completed a synthesis of brasilibactin A (1), a structurally and biologically interesting linear depsipeptide, and its unnatural diastereomers (2-4). The convergent synthetic strategy should be broadly applicable to the synthesis of a diverse set of analogs

Table 1. Comparison of ¹H NMR data for 1–4 with natural brasilibactin A^a

H no.	Natural 1 ¹	1 (17 <i>S</i> ,18 <i>R</i>)	2 (17 <i>R</i> ,18 <i>S</i>)	3 (17 <i>S</i> ,18 <i>S</i>)	4 (17 <i>R</i> ,18 <i>R</i>)	(17S,18R) in Ref. 3	(17 <i>R</i> ,18 <i>S</i>) in Ref. 3
18	2.62	2.62	2.66	2.70	2.74	2.61	2.66
14	4.25	4.25	4.21	4.23	4.15	4.24	4.22
21	4.44	4.44	4.46	4.40	4.42	4.42	4.47
9	4.47	4.47	4.48	4.48	4.51	4.47	4.46
17	4.90	4.90	4.95	4.93	4.95	4.90	4.95
20	8.11	8.13	8.15	7.88	7.93	8.15	8.16

^a Chemical shifts (ppm) in DMSO-d₆.

of **1**. Further studies to assess their biological activity and identify molecular targets of **1** are in progress.

Acknowledgment

This work was supported by Duke University.

Supplementary data

Copies of ¹H NMR data for compounds 1–4, 7–10, 22, 24, and 27–43 and comparison of ¹H NMR data for 1–4. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2007.09.112.

References and notes

 Tsuda, M.; Yamakawa, M.; Oka, S.; Tanaka, Y.; Hoshino, Y.; Mikami, Y.; Sato, A.; Fujiwara, H.; Ohizumi, Y.; Kobayashi, J. J. Nat. Prod. 2005, 68, 462–464.

- (a) Hu, J.; Miller, M. J. J. Am. Chem. Soc. 1997, 119, 3462–3468; (b) Vergne, A. F.; Walz, A. J.; Miller, M. J. Nat. Prod. Rep. 2000, 17, 99–116, and references cited therein.
- 3. Mitchell, J. M.; Shaw, J. T. Org. Lett. 2007, 9, 1679– 1681.
- Lin, C.-F.; Yang, J.-S.; Chang, C.-Y.; Kuo, S.-C.; Lee, M.-R.; Huang, L.-J. *Bioorg. Med. Chem.* 2005, 13, 1537– 1544.
- Bremner, J. B.; Samosorn, S.; Ambrus, J. I. Synthesis 2004, 16, 2653–2658.
- Holden, K. G.; Mattson, M. N.; Cha, K. H.; Rapoport, H. J. Org. Chem. 2002, 67, 5913–5918.
- (a) Hu, J.; Miller, M. J. J. Org. Chem. 1994, 59, 4858– 4861; (b) Yokokawa, F.; Izumi, K.; Omata, J.; Shioiri, T. Tetrahedron 2000, 56, 3027–3034; (c) Walz, A. J.; Miller, M. J. Org. Lett. 2002, 4, 2047–2050; (d) Dong, L.; Miller, M. J. J. Org. Chem. 2002, 67, 4759–4770.
- Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127–2129.
- Abiko, A.; Liu, J.-F.; Masamune, S. J. Am. Chem. Soc. 1997, 119, 2586–2587.
- Haldar, J.; Kondaiah, P.; Bhattacharya, S. J. Med. Chem. 2005, 48, 3823–3831.